Package: PheNorm 0.1.1

Clara-Lea Bonzel

PheNorm: Unsupervised Gold-Standard Label Free Phenotyping Algorithm for EHR Data

The algorithm combines the most predictive variable, such as count of the main International Classification of Diseases (ICD) codes, and other Electronic Health Record (EHR) features (e.g. health utilization and processed clinical note data), to obtain a score for accurate risk prediction and disease classification. In particular, it normalizes the surrogate to resemble gaussian mixture and leverages the remaining features through random corruption denoising. Background and details about the method can be found at Yu et al. (2018) <doi:10.1093/jamia/ocx111>.

Authors:Sheng Yu [aut], Victor Castro [aut], Clara-Lea Bonzel [aut, cre], Molei Liu [aut], Chuan Hong [aut], Tianxi Cai [aut], PARSE LTD [aut]

PheNorm_0.1.1.tar.gz
PheNorm_0.1.1.zip(r-4.5)PheNorm_0.1.1.zip(r-4.4)PheNorm_0.1.1.zip(r-4.3)
PheNorm_0.1.1.tgz(r-4.5-any)PheNorm_0.1.1.tgz(r-4.4-any)PheNorm_0.1.1.tgz(r-4.3-any)
PheNorm_0.1.1.tar.gz(r-4.5-noble)PheNorm_0.1.1.tar.gz(r-4.4-noble)
PheNorm_0.1.1.tgz(r-4.4-emscripten)PheNorm_0.1.1.tgz(r-4.3-emscripten)
PheNorm.pdf |PheNorm.html
PheNorm/json (API)

# Install 'PheNorm' in R:
install.packages('PheNorm', repos = c('https://celehs.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/celehs/phenorm/issues

Pkgdown site:https://celehs.github.io

On CRAN:

Conda:

4.70 score 5 stars 7 scripts 174 downloads 2 mentions 1 exports 0 dependencies

Last updated 4 years agofrom:7ea2ecee5b. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 28 2025
R-4.5-winOKFeb 28 2025
R-4.5-macOKFeb 28 2025
R-4.5-linuxOKFeb 28 2025
R-4.4-winOKFeb 28 2025
R-4.4-macOKFeb 28 2025
R-4.3-winOKFeb 28 2025
R-4.3-macOKFeb 28 2025

Exports:PheNorm.Prob

Dependencies:

Example on simulated dataset

Rendered fromexample.Rmdusingknitr::rmarkdownon Feb 28 2025.

Last update: 2021-02-20
Started: 2021-02-20