Package: MAP 0.1.4

Jiehuan Sun

MAP: Multimodal Automated Phenotyping

Electronic health records (EHR) linked with biorepositories are a powerful platform for translational studies. A major bottleneck exists in the ability to phenotype patients accurately and efficiently. Towards that end, we developed an automated high-throughput phenotyping method integrating International Classification of Diseases (ICD) codes and narrative data extracted using natural language processing (NLP). Specifically, our proposed method, called MAP (Map Automated Phenotyping algorithm), fits an ensemble of latent mixture models on aggregated ICD and NLP counts along with healthcare utilization. The MAP algorithm yields a predicted probability of phenotype for each patient and a threshold for classifying subjects with phenotype yes/no (See Katherine P. Liao, et al. (2019) <doi:10.1093/jamia/ocz066>.).

Authors:Jiehuan Sun [aut, cre], Katherine Liao [aut], Sheng Yu [aut], Tianxi Cai [aut]

MAP_0.1.4.tar.gz
MAP_0.1.4.zip(r-4.5)MAP_0.1.4.zip(r-4.4)MAP_0.1.4.zip(r-4.3)
MAP_0.1.4.tgz(r-4.4-any)MAP_0.1.4.tgz(r-4.3-any)
MAP_0.1.4.tar.gz(r-4.5-noble)MAP_0.1.4.tar.gz(r-4.4-noble)
MAP_0.1.4.tgz(r-4.4-emscripten)MAP_0.1.4.tgz(r-4.3-emscripten)
MAP.pdf |MAP.html
MAP/json (API)

# Install 'MAP' in R:
install.packages('MAP', repos = c('https://celehs.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/celehs/map/issues

Pkgdown site:https://celehs.github.io

Datasets:

On CRAN:

7.19 score 6 stars 1 packages 174 scripts 638 downloads 215 mentions 1 exports 5 dependencies

Last updated 4 years agofrom:d5d942880a. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 03 2024
R-4.5-winOKDec 03 2024
R-4.5-linuxOKDec 03 2024
R-4.4-winOKDec 03 2024
R-4.4-macOKDec 03 2024
R-4.3-winOKDec 03 2024
R-4.3-macOKDec 03 2024

Exports:MAP

Dependencies:flexmixlatticeMatrixmodeltoolsnnet

Simulated Example

Rendered fromexample.Rmdusingknitr::rmarkdownon Dec 03 2024.

Last update: 2020-08-06
Started: 2019-04-24